skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Pillai, Nisha"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We propose a learning system in which language is grounded in visual percepts without specific pre-defined categories of terms. We present a unified generative method to acquire a shared semantic/visual embedding that enables the learning of language about a wide range of real-world objects. We evaluate the efficacy of this learning by predicting the semantics of objects and comparing the performance with neural and non-neural inputs. We show that this generative approach exhibits promising results in language grounding without pre-specifying visual categories under low resource settings. Our experiments demonstrate that this approach is generalizable to multilingual, highly varied datasets. 
    more » « less
  2. null (Ed.)
    The success of grounded language acquisition using perceptual data (e.g., in robotics) is affected by the complexity of both the perceptual concepts being learned, and the language describing those concepts. We present methods for analyzing this complexity, using both visual features and entropy-based evaluation of sentences. Our work illuminates core, quantifiable statistical differences in how language is used to describe different traits of objects, and the visual representation of those objects. The methods we use provide an additional analytical tool for research in perceptual language learning. 
    more » « less
  3. Ordering the selection of training data using active learning can lead to improvements in learning efficiently from smaller corpora. We present an exploration of active learning approaches applied to three grounded language problems of varying complexity in order to analyze what methods are suitable for improving data efficiency in learning. We present a method for analyzing the complexity of data in this joint problem space, and report on how characteristics of the underlying task, along with design decisions such as feature selection and classification model, drive the results. We observe that representativeness, along with diversity, is crucial in selecting data samples. 
    more » « less
  4. null (Ed.)
    Learning the meaning of grounded language---language that references a robot’s physical environment and perceptual data---is an important and increasingly widely studied problem in robotics and human-robot interaction. However, with a few exceptions, research in robotics has focused on learning groundings for a single natural language pertaining to rich perceptual data. We present experiments on taking an existing natural language grounding system designed for English and applying it to a novel multilingual corpus of descriptions of objects paired with RGB-D perceptual data. We demonstrate that this specific approach transfers well to different languages, but also present possible design constraints to consider for grounded language learning systems intended for robots that will function in a variety of linguistic settings. 
    more » « less
  5. There has been substantial work in recent years on grounded language acquisition, in which a model is learned that relates linguistic constructs to the perceivable world. While powerful, this approach is frequently hindered by ambiguities and omissions found in natural language. One such omission is the lack of negative descriptions of objects. We describe an unsupervised system that learns visual classifiers associated with words, using semantic similarity to automatically choose negative examples from a corpus of perceptual and linguistic data. We evaluate the effectiveness of each stage as well as the system's performance on the overall learning task. 
    more » « less